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Abstract 
 
The National Library of Medicine's (NLM) IRVIS 

project has been evaluating algorithms that determine 
which search results in a result set most closely match a 
selected search result.  This is similar to the "find 
related" feature available on some websites (such as 
NLM's PubMed), but it operates within the context of 
search results that have already been retrieved.  
Essentially, it provides a way of re-ranking a results list 
in order of similarity to a particular result of interest to 
the user. 

The similarity ranking algorithms that were tested 
included two set-based approaches as well as several 
variations on the traditional vector-cosine model.  The 
algorithms were evaluated using the OHSUMED test 
collection from Oregon Health Sciences University.  
Surprisingly, the simpler set-based approaches provided 
a better ranking than the vector-based approaches and 
were also found to be faster. 

1. Introduction 

The NLM is developing a single access point to all of 
its online information collections, known as the 
Gateway (http://gateway.nlm.nih.gov).  Search result 
sets in the Gateway can be large and difficult to navigate 
due to the heterogeneous data being accessed.  
Providing navigation assistance is one of the goals of the 
Information Retrieval and Visualization (IRVIS) 
project.  The IRVIS project is exploring new ways of 
organizing and presenting search results, characterizing 
available data, and assisting the user in formulating 
queries.  As a part of that work, we are designing a 
visualization that we call "Neighbor View", which is 
intended to show graphically which search results are 
most similar to a target search result selected by the 
user. 

In order to develop such a system, we needed an 
algorithm for measuring the similarity of one search 

result's text to another.  Some systems, such as the 
National Library of Medicine's (NLM) PubMed website 
(http://www.pubmed.gov), prepare special indexes in 
advance so that when a request is made for a document's 
"neighbors" the system only has to check static files [1].  
In our case we did not have that option, because we are 
developing the visualization as a package which existing 
client systems (e.g. web-sites) could use.  That design 
decision also meant that the Neighbor View package 
would not necessarily have access to the complete 
search result set all at once, but only to the sub-set given 
to it by the client system.  It was therefore necessary to 
develop a similarity ranking algorithm that would 
perform its calculations on the fly and that would 
operate on the sub-set of search results given to it by the 
client system. 

It quickly became clear that the code-base for the 
similarity ranking algorithms would be large enough to 
be a package in its own right, and we made the decision 
to separate it from the Neighbor View visualization.  
The Similarity Ranking Algorithms package now 
contains several ranking algorithms and a variety of 
term weight strategies.  The following nine algorithms* 
are the subject of the testing being reported here. 

2. Algorithms 

Each of the rankers (ranking algorithms) take as 
input the target text string (the search result for which 
similar results are desired), and list of context strings 
(the sub-set of search results provided by the client 
system).  The rankers work by comparing each context 
string against the target, getting a similarity score for 
each, and then ranking the results according to the 
scores. 

Several of the rankers described below are based on 
the traditional vector space model introduced by Salton 
                                                           

* “Algorithm” here is used to denote a particular kind of 
similarity ranker in combination with some number of term 
weight strategies. 
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[2].  For these rankers, each string is regarded as having 
an associated vector of numbers* in which there is one 
number for each unique term in the entire context of 
strings, with the number representing that term’s 
importance for that particular string.  The index that 
corresponds to a given term is the same for each vector 
so that vectors for different strings can be compared.  
One can then consider the angle between two such 
vectors (in n-dimensional vector space, where n is the 
number of unique terms in the context) as a measure of 
the similarity between the texts.  This is because an 
angle of zero would mean that the documents had 
identical term sets, while an angle of 90 would mean the 
documents did not share any terms.  Usually the cosine 
of the angle is used as the measurement of similarity, 
which gives larger scores when the vectors are close 
together and smaller scores when they are farther apart.  
(For a more complete explanation of the vector-cosine 
approach, see Appendix II.) 

The cosine of the angle can be computed by 
normalizing the two vectors and then taking the dot 
product.  For the vector-based rankers, we implemented 
the normalization as one of several types of optional 
term weight strategies, which affect the “importance” of 
a term by changing the numbers stored in the vectors.  
This means that after applying any term weights, we can 
just use the dot-product for the score, i.e.: 

∑
∈

≡
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I  

where t is a term shared by both texts A and B, at is the 
term's weight in text string A's vector, and bt is the 
term's weight in text string B's vector. 

2.1. Set Ranker 

This ranker computes a similarity score by treating 
the two strings as sets of (unique) terms A and B, and 
taking as the score S the ratio of the number of terms in 
the sets’ intersection to the number terms in their union, 
i.e.:  

BA

BA
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(This is the "Jaccard coefficient" for two sets.)  The 
idea here is that if the strings are related to each other, 
the term sets will be more likely to have a larger 
intersection (and a smaller union).  If the strings were 
identical, the intersection would equal the union, so 

                                                           
* Although the concept of a vector was used, we found that 

there was a 50% time savings to do the implementation using 
hash maps (of terms to weights) instead of vectors. 

dividing by the union's size gives us a number between 
0 and 1.  

2.2. Word Length 

This ranker is very much like the Set Ranker, except 
that the terms are weighted according to their length, 
i.e.:  
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This algorithm is based on the hypothesis that, in 
general, longer words are more likely to represent the 
subject of a text string than are shorter words.  We were 
not sure this was correct, but it seemed plausible.  (As 
discussed below, our tests indicate that this guess is 
correct; this algorithm outperforms the others listed 
here.)  

2.3. Aslam-Frost 

J. Aslam and M. Frost [3] have proposed an 
information-theoretic approach to measuring the 
similarity between strings of text based on work by D. 
Lin [4].   Their formula calculates the similarity score 
for two strings A and B as follows: 
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where t is a term, π (t) is the fraction of context strings 
containing t, and pA,t  is the ‘fractional occurrence of 
term t’ in A (the term count for  t in A divided by A’s 
word length). 

2.4. Simple Vector 

This is the simplest of the vector algorithms.  The 
terms were completely unweighted, so the numbers in 
the vectors were either 1 (the term was present) or 0 (the 
term was absent).   

2.5. Vector SW,N,IDF,PML 

This algorithm is the same as the "Simple Vector" 
approach above, except that four types of term weights 
are applied (in sequence): Stop Words, Normalization, 
Inverse Document Frequency, and PubMed's local term 
weight.  Each term weight strategy operates by 
multiplying the elements in a string's vector by a 
(possibly varying) number.  Depending on the kind of 
term weight strategy, the factor that a given element in 
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the vector receives might depend on the term, the 
number of elements in the vector, or the context.  These 
four strategies are described in detail below.  

1. Stop Words (SW):  Each element of the vector 
that corresponds to a term found in a set of 366 
commonly occurring words is set to zero.  The 
other weights are left at one. 

2. Normalization (N):  Each number in the string's 
vector is divided by the length of the vector 
(the square root of the vector's dot product with 
itself).   This causes the vector to have length 1 
(as measured in vector space). 

3. Inverse Document Frequency (IDF):  This is a 
commonly applied global weight (i.e. one that 
is based on the context as a whole rather than 
on the individual text string whose vector is 
being weighted).  Each element in the vector is 
multiplied by a factor which is smaller if the 
term for that element occurs in many of the text 
strings in the context.  Specifically, the 
weighting [5] used for a given term is:  









n
N

2log
 

where N is the total number of strings in the 
context, and n is the number of strings containing 
the term.  This formula gives terms that occur in 
fewer documents a higher weight than terms that 
are more common. 

4. PubMed Local (PML):  This is a local term 
weight (one that depends on the individual text 
string, rather than the context) used by the 
PubMed website.  The formula [6] is:  

1* *1
1

−+
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where lw is the local weight, α=0.0044, λ=0.7, 
dlen is the total number of terms in the string 
including duplicates, and f is the number of times 
the term occurs in the string.  Because λ is less 
than 1, this formula gives a term a higher weight 
for a particular term when it appears frequently in 
that text string.  

2.6. Vector SW,IDF,PML 

This is the same as the previous algorithm except that 
the vectors are left unnormalized, to allow us to see the 
effects of normalization. 

2.7. Vector SW,N,IDF,TF 

This is the vector algorithm with four term weights 
applied: Stop Words, Normalization, Inverse Document 
Frequency, and Term Frequency (TF).  The first three 
weights are the same as described above for “Vector 
SW,N,IDF,PML.”  Term Frequency is a typical local 
weight that gives terms a higher weight value in 
documents where they occur more frequently.  The 
specific form of this weight we used was the augmented 
normalized term frequency [7], which is:  





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where lw is the local weight for a term t in a string d (for 
"document"), mdt is the number of times a term t occurs 
in d, and md is the maximum number of times any given 
term occurs in d.  

2.8. Vector SW,IDF,TF 

This is the same as the previous algorithm except that 
the vectors are left unnormalized, to allow us to see the 
effects of normalization. 

2.9. Vector SW 

This is the vector algorithm with only the Stop 
Words term weight applied. 

3. Testing the Algorithms 

We decided to test the similarity ranking algorithms 
using the OHSUMED test collection [8] (developed by 
Dr. William Hersh, and others) from Oregon Health 
Sciences University.  The collection* consists of 5 files 
of 348,566 MEDLINE records (which are mostly 
journal article citations), a query file with 106 queries, 
and files which list documents (the MEDLINE records) 
that have been judged by people (physicians) to be 
either relevant, possibly relevant, or not relevant to the 
queries.  The OHSUMED version of the records 
contains selected fields from the full MEDLINE record, 
including basic things such as title, author, and journal, 
as well as things like subject keywords (MeSH), the 
MEDLINE ID number, and the OHSUMED ID 
number.  For most of the records in the collection, the 
abstract field is also present, but for about 1/3 no 
abstract is available.  The abstracts that are present in 
the records are truncated, some at (roughly) 250 words 
and others at 400 words.  (When truncated, they are 

                                                           
* The OHSUMED collection is available via anonymous 

ftp from medir.ohsu.edu. 
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marked as such.) In our use of the records, we used all 
of the available data, though we also tried testing 
without the abstract field for comparison (see below). 

The queries in the OHSUMED query file are not 
necessarily the actual strings used to search the data, but 
are descriptions of the information that was being 
sought.  For each query, several people tried different 
approaches to retrieve the desired information, and the 
documents retrieved by the query attempts were 
collected and judged for relevance.  The total number of 
query-document pairs that were judged is 16,140.  The 
other documents in the collection do not have associated 
judgments, but are less likely to be relevant to the 
queries because they were not retrieved. 

The Similarity Ranking Algorithms rank text strings 
(e.g. the OHSUMED documents) according to their 
relevance to a target text string.  The data provided with 
the OHSUMED collection does not directly indicate 
which documents are related to which other documents.  
However, it seems reasonable to make the assumption 
that the set of documents that have been judged relevant 
to a particular query are also relevant to one another.  
This might not be true in every case, but it seems likely 
to be true in most cases, and that should be sufficient to 
evaluate the ranking algorithms. 

One thing the OHSUMED data does give us is the 
complete set of retrieved results (within the OHSUMED 
collection) from multiple attempts to search for 
documents for a given query.  This was was very 
helpful, because it meant we did not need to write a 
search system for the OHSUMED data.  Instead, we 
could use the queries in the query file, and take as their 
results the documents specified in the data. 

For a given query, we obtained a list of the 
documents that were retrieved by it, and also 
information about the relevance judgments made for 
those documents.  The relevance judgments were 
converted to a numeric scale, with 2 being definitely 
relevant, 1 being possibly relevant, and 0 being not 
relevant, so that each document had a query-relevance 
“score.”  (In cases where multiple judgments were made 
for a particular query-document pair, the scores were 
averaged.)  If a query did not have at least two definitely 
relevant documents, it was skipped.  The list of results 
was then given to one of the similarity ranking 
algorithms to rank, with the target text string being one 
of the definitely relevant documents. 

To assess how well the ranking algorithm performed, 
a score was assigned based on how close to the top of 
the list the definitely relevant documents were placed.  
The ranked list was compared to a worst case list where 
the definitely relevant documents were all at the bottom 
of the list, and the definitely relevant documents were 
regarded (for the purposes of the scoring) as having 
moved from the worst case list position to the actual 

ranked list position.  Each definitely relevant document 
was given one point for each notch moved in the right 
direction, and -1 point for each notch moved in the 
wrong direction.  The sum of these points for the 
definitely relevant documents was taken as a measure of 
the ranking algorithm's performance. 

In an ideal case, all of the definitely relevant 
documents would be moved to the top of the list.  For a 
result set of size n with d definitely relevant documents, 
the sum P for this ideal case would be: 

ddnP *)( −=  

To get the normalized score for the ranking algorithm 
(so that the score would be independent of the result set 
size), we divided the actual sum of the document scores 
by the sum for the ideal case, which gave us a number 
between 0 (worst case) and 1 (ideal case). (For more 
detail on this scoring procedure, see Appendix III.) 

That, then, is how the score for one ranking 
algorithm was computed for one query, using one 
definitely relevant document as the target text.  We 
repeated the process for each definitely relevant 
document to get multiple scores for the algorithm for 
that one query, and tried using each algorithm and each 
query's result set (where possible), and were able to 
obtain 2,126 scores for each algorithm. 

4. Results 

Table 1 shows, as an example, the test results 
collected for the tenth query, for which there were five 
definitely relevant documents, each of which was used 
in turn as a target string for ranking the documents in the 
retrieval set (the target string document included).  For 
space reasons, data is only shown for seven of the 
algorithms.  At the bottom of each algorithm's column 
of scores are four rows of statistics that we computed for 
each query.  For each algorithm, we computed the 
average of its scores (across the different target texts), 
the standard deviation, the number of times that 
algorithm outperformed all other algorithms being tested 
(the “Win Counts”), and the percentage of the time that 
the algorithm “won.”  (In the case of a tie, both 
algorithms were considered to win, which means that 
the percentages do not add to 100%.) The winning score 
for each trial is shown in bold. 
 

4.1. Results for All Queries 

The statistics for all 2,126 trials are shown in Table 
2.  The column and row headings have been switched in 
this table with respect to Table 1. These results are 
arranged in order from the highest average to the lowest.
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Table 1:  Sample Test Scores for OHSUMED Query #10 

Target 
OHSUMED ID 

Vector SW, 
IDF, PML 

Set 
Ranker 

Vector 
SW 

Aslam-
Frost 

Vector SW, 
N, IDF, PML 

Vector SW, 
N, IDF, TF 

Word 
Length 

6746 0.8267 0.66 0.7933 0.7867 0.9133 0.8067 0.6467 
57590 0.8133 0.66 0.7467 0.7733 0.9133 0.78 0.64 

111278 0.9067 0.6867 0.6733 0.82 0.98 0.8 0.7 
310557 0.94 0.68 0.8 0.9867 0.96 0.9 0.6467 
347443 0.9267 0.7 0.66 0.82 0.9933 0.92 0.72 

Average 0.8827 0.6773 0.7347 0.8373 0.952 0.8413 0.6707 
Std. Dev. 0.0586 0.0174 0.0656 0.086 0.0372 0.0638 0.0367 

Win Counts 0 0 0 1 4 0 0 
Win Percentages 0 0 0 20% 80% 0 0 

 
 

Table 2:  Summary of Results For All Queries 

  Average 
Score Std. Dev. Wins Win 

% 
1 Word Length 0.6677 0.1106 904 43% 
2 Aslam-Frost 0.6583 0.1067 466 22% 
3 Set Ranker 0.6515 0.1100 223 10% 
4 Vector SW, N, IDF, PML 0.6334 0.1064 151 7.1% 
5 Vector SW, IDF, PML 0.6286 0.1037 30 1.4% 
6 Vector SW, N, IDF, TF 0.6252 0.1028 38 1.8% 
7 Vector SW 0.6246 0.1068 131 6.2% 
8 Vector SW, IDF, TF 0.6168 0.1009 64 3.0% 
9 Simple Vector 0.6065 0.1074 157 7.3% 

 
 

Table 3:  Summary of Results For All Queries, Without Using 
Abstracts 

  Average 
Score Std. Dev. Wins Win 

% 
1 Word Length 0.69216 0.10742 1,109 52% 
2 Set Ranker 0.67992 0.10596 425 20% 
3 Aslam-Frost 0.65967 0.10544 326 15% 
4 Vector SW,N,IDF,TF 0.61925 0.10215 53 2.5% 
5 Vector SW,N,IDF,PML 0.61731 0.10207 46 2.2% 
6 Simple Vector 0.61725 0.10542 65 3.1% 
7 Vector SW 0.61717 0.10776 70 3.3% 
8 Vector SW,IDF,TF 0.61536 0.10094 40 1.9% 
9 Vector SW,IDF,PML 0.61385 0.10096 39 1.8% 
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Table 5:  Differences Between Algorithms
(Abstracts Excluded, c.f. Table 3) 

 1 2 3 4 5 6 7 8 
9 D D D - - - - - 
8 D D D - - - -  
7 D D D - - -   
6 D D D - -    
5 D D D -     
4 D D D      
3 D D       
2 D        

 

4.2. The Effect of Abstracts 

To test the effect of the documents’ abstract fields on 
the performance of the algorithms, we also ran the tests 
using all of the OHSUMED fields except the abstract.  
The results of those tests are presented in Table 3. 

5. Analysis of Results 

5.1. Checking that the Distributions are Normal 

In order to make sure that the standard deviations are 
meaningful, we created scatter plots of the distributions 
for several of the ranking algorithms' score sets.  The 
result of one of those scatter plots is shown in Figure 1.  
The plot is using a bin size of 0.01 to group similar 
scores together. 

 
Figure 1: A plot of the distribution of scores obtained 

with the "simple vector" algorithm 

All of the plots appeared to roughly follow the shape 
of a normal distribution, so calculating standard 
deviations was deemed appropriate. 

5.2. Testing for Statistical Differences 

The standard deviations for the algorithms' average 
scores produce ranges that all overlap each other, but 
that does not necessarily mean that the differences 
between the average scores are not significant.  Using 
formulas and a table found in a handbook from NIST 
[9], a Perl script was written that would determine 
whether two averages were statistically different.*  This 
test involves some chance of error, but the script was 
designed so that if it found two averages to be different, 
there would be a 95% confidence in that result.  Using 

                                                           
* Available on the web at:  
 http://irvis.nlm.nih.gov/cgi/compareAvgs.pl. 

 Contact the authors for the source code if desired. 

that test, we found that some of the averages really are 
better than the others. 

The following tables summarize the results from the 
test script, using the data for each ranking algorithm.  
The column and row labels for tables 4 and 5 are the 
numbers assigned to the algorithms in tables 2 and 3, 
respectively.  (Note that the ordering in tables 2 and 3 
are slightly different, so the numbers are not the same 
between tables 4 and 5.)  A "D" in a table box means the 
averages for the algorithms represented by the row and 
column are different (with 95% confidence.)  A "-" in a 
box means the averages were not shown by the test to be 
different.  Table 4 compares the average scores obtained 
from the tests that used abstracts (Table 2), while Table 
5 compares the averages for the tests where abstracts 
were not used (Table 3). 

The same type of analysis can be done to evaluate the 
difference in the algorithms’ performance between the 
two test runs.  The following table indicates the effect of 
removing the abstract as a field to be considered.  In the 
second column, a value of “Improved” means that there 
was a statistically significant improvement in the scores 

Table 4:  Differences Between Algorithms
(Abstracts Included, c.f. Table 2) 

 1 2 3 4 5 6 7 8 
9 D D D D D D D D 
8 D D D D D D D  
7 D D D D - -   
6 D D D D -    
5 D D D -     
4 D D D      
3 D D       
2 D        
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as a result of leaving out the abstract.  A value of "-" 
means the difference between the scores was not found 
to be significant, and a value of “Degraded” means that 
leaving out the abstract significantly hurt the algorithm's 
performance. 

 

6. Conclusions 

Several conclusions can be drawn from the analysis.  
First, the Word Length algorithm did significantly 
better, on average, than any of the other algorithms 
tested.  This is interesting, because with the exception of 
the Set Ranker algorithm and perhaps the Simple Vector 
algorithm, the Word Length algorithm is simpler than 
the others.  Simpler algorithms generally mean faster 
algorithms, and some basic time tests of our algorithms 
confirmed that, except for the Set Ranker, the Word 
Length ranker was faster than the others.*  Both in terms 
of accuracy and speed, for this application, Word 
Length appears to be superior. 

Second, removing the abstract significantly helped 
the two set-based algorithms (Set Ranker and Word 
Length), but generally hurt the vector-based algorithms.  
It is likely that the set-based algorithms are more 
sensitive to the "noise" terms in abstracts which are not 
representative of the subject, and that removing the 

                                                           
* The ranking times of course depend on the efficiency of 

the code implementing the algorithms.  However, the Simple 
Vector algorithm, which does not even perform normalization 
or stop word elimination, was still found to be slower than 
Word Length even after efficiency improvements had been 
made that cut its time in half.  The improvement in speed of 
Word Length over Simple Vector is a small, but significant 
amount.  However, once the extra term weights were added in 
to test the Vector SW,N,IDF,PML algorithm, the Word Length 
algorithm was found to be more than three times faster. 

abstract gives more weight to the title terms, which are 
usually carefully chosen to represent the topic of the 
article.  The vector-based algorithms, on the other hand, 
have term weights which can handle the noise terms to 
some extent, and therefore some of them are able to 
benefit from the inclusion of the abstract.  The notable 
exception to this is the Simple Vector algorithm, which 
did not use any term weights, and therefore reacted the 
same way to noise terms as did the set-based algorithms. 

Third, the fact that the differences were small relative 
to the standard deviations, combined with the fact the 
best average score was under 0.67 (with abstracts 
included), suggests that perhaps the testing strategy 
employed had some weaknesses.  It would have been 
nice if there had been a broader range in average scores.  
Also, given that the score produced by a random ranker 
(which we implemented) results in an average score of 
0.5, we would have been happier to see scores of 0.8 or 
0.9.  (However, at the very least, we can be pleased that 
all the rankers did do much better than a random 
ranker.)  Two assumptions that were made could have 
resulted in the lower scores: 

1. Documents judged definitely relevant to a 
particular query are relevant to each other.  
This is certainly not true all of the time, and 
although we may have been correct in banking 
on its being true most of the time, this 
assumption would have resulted in the 
algorithms having imperfect data to process, 
which would have resulted in lower scores.  An 
alternative approach was tried that modified 
this assumption (see Appendix I), but the 
results were quite similar. 

2. Documents with similar subjects share 
similar terms.  This is a common Information 
Retrieval assumption, because the only data 
you have for deducing a document's subject is 
its term set.  As with the first assumption, the 
fact that this does not always hold true would 
result in lower scores.  Some additional 
accuracy might have been attained if synonyms 
were considered, but we have not attempted 
that primarily because we anticipated that it 
would significantly slow down the algorithms. 

Finally, it is interesting to note, for the Vector-based 
approaches, which term weights significantly improved 
the score.  Three things stand out: 

1. When abstracts are included, the use of stop 
words (Vector SW) resulted in a significantly 
better average than the Simple Vector 
algorithm.  This is not too surprising, but it is 
good to see the confirmation. 

Table 6: Effect of Excluding the 
Abstract 

Algorithm Impact 
Word Length Improved 
Aslam-Frost - 
Set Ranker Improved 

Vector SW,N,IDF,PML Degraded 
Vector SW,IDF,PML  Degraded 
Vector SW,N,IDF,TF - 

Vector SW Degraded 
Vector SW,IDF,TF - 

Simple Vector Improved 
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2. Tables 2 and 4 show that when abstracts are 
included, normalizing the vectors helps in at 
least some of the cases.  Our significance test 
did not indicate a significant difference 
between algorithms 4 & 5 (Vector 
SW,N,IDF,PML, Vector SW,IDF,PML).  
However, that test was not designed to prove 
that there was no significant difference 
between the two, so it is possible that 
normalization helps even in that case. 

3. The use of the PML (PubMed's local) term 
weight instead of TF resulted in significant 
improvements, as long as the abstracts were 
included in the data analyzed by the 
algorithms. 

 

7. Appendix I: Alternate Evaluation 
Strategies 

After considering the first possible weakness cited 
above in the conclusions, we decided to try a different 
approach in evaluating the performance of the ranking 
algorithms.  We redesigned the evaluation software and 
divided the evaluation process into three pieces: 

1. The assignment of numeric scores to query-
document pairs, based on the relevance of the 
document to the query that retrieved it.  The 
judgments were already made as a part of the 
OHSUMED data, so this step just required a 
conversion from non-numeric judgments to a 
numeric score. 

2. The assignment of numeric scores to 
document-document pairs to indicate the 
relevance of the documents to each other.  
These scores were based on the query-
document scores assigned in the first step.  It 
was not necessary to do this for all document 
pairs, but only for the pairs where one 
document was a selected target for the ranking 
algorithms, and the second document was in 
the same result set for a given query. 

3. The assignment of a score to an algorithm's 
ranking of the documents for a given query and 
target document, to measure how closely the 
algorithm's ranking matched the ideal ranking.  
The ideal ranking was defined as the ranking 
resulting from ordering the documents in a 
query's result set according to their document-
document scores for the given target document. 

7.1. The Second Strategy 

In the first evaluation strategy (used in the main body 
of the paper), steps 1 and 2 were essentially the same.  
That is, for a given target document and query, a 
document’s document-document score was the same as 
its query- document score.  In the new strategy, the idea 
was to use additional judgment information from the 
OHSUMED data about the two documents.  In 
particular, we made the document-document judgments 
independent of a particular query by combining the 
judgment data for any query in which both documents 
appeared in the result set. 

In the second strategy, all query-document scores 
were between 0 and 1, and the product of two query-
document scores taken from the same query was 
regarded as statement about the probability that those 
two documents were related to each other.  In cases 
where there was more than one query q that retrieved 
both documents, the probability scores pq for each query 
were combined into an overall probability P using the 
formula: 

)1(1 ∏ −−=
q

qpP  

This formula results in a probability that is always 
greater than or equal to any of the individual 
probabilities. This probability P was taken as the 
document-document score.  We adjusted the query-
document score numbers to get document-document 
scores that were to our liking, and eventually settled on 
0.9 for a document "definitely relevant" to the query, 0.6 
for a document "possibly relevant" to the query, and 0.3 
for a document that was not relevant. 

Hopefully an example will make this a little clearer.  
Suppose you have two documents, whose OHSUMED 
ID numbers are 65403 and 12293, and that these 
documents appear in the result set for query 65 with 
query-document judgments "d" (definitely relevant) and 
"d", respectively.  Each of these gets a query-document 
score of 0.9, and if that were the only query those two 
documents both appeared in, their document-document 
score would be 0.9*0.9 = 0.81. 

Now, suppose you have those two documents 
appearing together in three queries, with the following 
query-document (Q-D) scores: 

Query # Q-D for 65403 Q-D for 12293
65 d (= 0.9) d (= 0.9) 
91 p (= 0.6) n (= 0.3) 
92 n (= 0.3) n (= 0.3) 

In this case, the three probabilities obtained for each 
query would be 0.81, 0.18, and 0.09, and these would be 
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combined using the formula above to get an overall 
probability of 0.86. (The exception to this method was 
when a document was being compared against itself for 
relevance. In that case, the document-document score 
was fixed at 1.0) 

This strategy also required a change to the way a 
score was calculated for an algorithm’s ranking of 
documents for a query. In this new approach, it becomes 
difficult to identify a sub-group of documents (such as 
the definitely relevant documents in the former strategy) 
which the ranker should move to the top of the list.  
Instead, we opted to consider the ranker's ordering of all 
of the documents in a query's result set. 

An algorithm's ranked list of documents, with the 
most relevant document to the target first, was converted 
into a list of document-document scores.  This list was 
then sorted to the ideal case (in which the document-
document scores are arranged from highest to lowest) in 
a way that kept track of how the list's elements' indices 
had shifted in the list.  The number of index positions 
each element had shifted was added to get a total 
number of points D.  We also calculated the number of 
points Dmax that would have resulted from going from 
the worst case ranking to the ideal case*, and then the 
ranking score was taken to be: 

max
1

D
DS −=  

7.1.1. The Second Strategy:  Results 

The algorithm scores obtained by this second 
evaluation strategy are shown below in table 7.  The test 
runs that produced these numbers included the abstract 
field in the data given to the rankers.  Because this 
analysis was done prior to our learning of the Aslam-
Frost algorithm, that algorithm was not included in the 
testing. 

As is evident on comparison with Table 2, this 
evaluation strategy did not yield the general 
improvement in the averages we were hoping for.  In 
fact, in all cases it slightly lowered the scores and 
increased the standard deviations.  On the positive side, 
it is good to see that that this strategy produced an 
identical ordering of the rankers as did the first strategy.  
(The algorithms, arranged according to their average 
score, show up in the same order in Tables 2 and 6.)  

                                                           
* We were unable to prove that the number of points 

obtained in shifting the elements from a worst case ranking to 
an ideal case ranking results in the maximum number of 
points, as much as that seems to make sense.  We were able to 
prove that swapping any pair of elements in the worst-case 
ordering will not result in a higher number of points. 

This increases our confidence in the accuracy of the 
results produced by the first strategy. 

 
Table 7:  Summary of Results For All Queries, 

Second Evaluation Strategy 

  Average 
Score 

Std. 
Dev. Wins Win 

% 
1 Word Length 0.6384 0.1187 1,220 57 
2 Set Ranker 0.6198 0.1178 272 13 

3 Vector 
SW,N,IDF,PML 0.5977 0.1224 192 9.0 

4 Vector 
SW,IDF,PML 0.5905 0.1199 54 2.5 

5 Vector 
SW,N,IDF,TF 0.5887 0.1199 62 2.9 

6 Vector SW 0.5883 0.1178 134 6.3 

7 Vector 
SW,IDF,TF 0.5794 0.1177 78 3.7 

8 Simple Vector 0.5702 0.1148 128 6.0 
 

7.2. The Third Strategy 

The third strategy we tried is the same as the second 
except for the final piece of the evaluation process, the 
assignment of a score to the algorithm's ranking.  As in 
the second strategy, the ranked list of documents 
returned by the ranking algorithm was converted into a 
list of document-document scores, and compared to an 
ideal case ordering of those scores.  In this case though, 
the comparison was made by summing the differences 
between corresponding elements of the two lists.  More 
formally, let A be the list of document-document scores 
as obtained from the ranker, and let B be the ideal case 
list, defined as: 

),...,( 10 naaaA =   and  ),...,( 10 nbbbB =  

Then we computed a number of points D for A's 
distance from B, and a number of points Dmax for the 
worst case ordering's distance from B, with the 
formulas: 

∑
=

−=
n

i
ii baD

0
  and  ∑

=
−−=

n

i
ini bbD

0
max  

From D and Dmax, the algorithm's score S is 
computed using the same formula as for the second 
evaluation strategy (see above). 
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7.2.1. The Third Strategy:  Results 

Unlike with the first two strategies, which gave a 
random ranker a score of roughly 0.5, the third strategy 
gave a random ranker a score of approximately 0.3.  
From that one might expect that the scores for the other 
algorithms would also be lowered by about 0.2, and that 
seems to be the case.  Table 8 shows how the algorithms 
were scored by this third approach.  Abstracts were 
included in the data given to the ranking algorithms. 

 
Table 8:  Summary of Results For All Queries, Third 

Evaluation Strategy 

  Average 
Score 

Std. 
Dev. 

Win
s  

Win 
% 

1 Word Length 0.4569 0.1027 979 46 
2 Set Ranker 0.4407 0.1014 384 18 

3 Vector 
SW,N,IDF,PML 0.4197 0.0939 220 10 

4 Vector 
SW,IDF,PML 0.4130 0.0935 131 6.2 

5 Vector 
SW,N,IDF,TF 0.41022 0.0916 96 4.5 

6 Vector SW 0.4091 0.1048 227 11 

7 Vector 
SW,IDF,TF 0.4005 0.0929 124 5.8 

8 Simple Vector 0.3957 0.1013 167 7.9 

Even if one adds 0.2 to these scores, they are still 
slightly below those obtained by the first strategy, 
though the standard deviations are slightly improved.  
However, once again we obtained the identical ordering 
of the algorithms, lending further support to the 
conclusion that the algorithms really do stack up against 
each other as listed.  It should be noted though that 
although the scores appear in the same order, whether or 
not two algorithms' scores are statistically different can 
be affected by the choice of evaluation strategy.  For 
example, while the scores listed in Table 2 for 
algorithms 3 and 4 were not shown to be statistically 
different (see Table 4), the scores for those same two 
algorithms in Table 8 (using the third evaluation 
strategy) are statistically different. 

7.3. Alternate Evaluation Strategies: 
Conclusions 

Neither of these alternate evaluation strategies were 
able to improve the overall scores.  It may be that the 
fault for the lower numbers does not lie with the 
evaluation strategy, but in some other area.  There are at 
least four other possible explanations: 

1. Faults with the data set:  Some of the query-
document pairs were judged for relevance 
multiple times, and the judgments for a given 
pair were not always in agreement. Relevance 
judgments are subjective, and people make 
mistakes. 

2. Limitations of the data set:  The data set 
provides query-document judgments; any 
extrapolation from query-document judgments 
to document-document judgments will be 
rough. 

3. Limitations of the algorithms:  It may be that 
other similarity ranking algorithms not 
evaluated here would have performed better. 

4. Problems with subject matching:  As 
mentioned above, the assumption that 
documents with similar terms are about the 
same subject (and vice-versa) is not always 
true. 

 

8. Appendix II:  On the Vector-Based Model 

This is a slightly more detailed description of the 
vector model than was provided in section 2.  In the 
vector model, you consider the set of unique terms that 
exist in all of the text strings being compared.  A 
particular text string is then represented as a vector, each 
of whose elements indicates whether a particular term 
occurs in that string.  If the term is not present, the 
element is a 0; if the term is present, the element is 
(ignoring term weights for the moment) a 1. 

For example, suppose our collection of text strings 
consists only of the two strings,  

S1 = “lettuce tomato carrots spinach” 
S2 = “tomato carrots onion onion”  

There are five unique terms in the set.  We chose an 
ordering for the terms, so that there will be a particular 
term associated with each index in the vectors.  Let's 
pick the ordering:  

(lettuce, tomato, carrots, onion, spinach)  

Then the two strings S1 and S2 would have the 
corresponding vectors V1 and V2:  

V1 = (1, 1, 1, 0, 1) 
V2 = (0, 1, 1, 1, 0)  

Although it is difficult (impossible might be a better 
word) to imagine a five-dimensional space in which 
these vectors can be plotted, one can easily imagine the 
two-dimensional plane that contains the two vectors, 



 11

and think two-dimensionally about the angle that lies 
between them.  If the strings were identical, the vectors 
would be the same, and the angle between them would 
be zero.  If the vectors did not share any terms, the angle 
between them would be 90 degrees.  (To see that, 
consider a list of just two terms, and the case where the 
two vectors are (0, 1) and (1, 0) ).  It therefore makes 
sense to consider the angle, or the cosine of the angle, as 
a measure of how closely related the two strings are. 

The cosine of the angle between two vectors of n 
elements can be calculated by taking the dot product and 
dividing by the lengths of the vectors: 

∑∑

∑

==

==
⋅

=
n

i
i

n

i
i

n

i
ii

ba

ba

VV
VVangle

1

2

1

2

1
21
21)cos(  

where the ai are the elements of V1 and the bi are the 
elements of V2. 

Often some sort of "term weight" will be used with 
the vector model.  A term weight would have the effect 
of scaling the elements of the vectors in some way, to 
give certain terms more weight (making them have a 
bigger impact).  For example, suppose we applied a term 
frequency weight that replaced the 1's in the vectors 
with a count of the number of times the term occurred in 
the corresponding string.  In our example, the only 
duplicate word is “onion” is S2, so V1 would stay the 
same but V2 would become  

V2 = (0, 1, 1, 2, 0)  

This changes the length of V2 and its relative angle 
with V1.  In this case, it moves V2 further away from 
V1 because "onion" is now emphasized and V1 doesn't 
have it. 

 

 

9. Appendix III:  On Scoring An 
Algorithm's Ranking 

This section provides more detail on the procedure 
used for assigning a score to a ranking returned by one 
of the similarity algorithms. The procedure here is the 
one mentioned in the main body of the paper, as 
opposed to the two alternate strategies mentioned in 
Appendix I. The discussion that follows assumes that 
the explanation in the main body of the paper (under the 
section “3. Testing the Algorithms”) has already been 
read. 

Suppose you have 5 documents, u, v, x, y, and z, 
which constitute the complete result set returned by a 
particular query. Also suppose that the query-relevance 
scores (based on the OHSUMED judgments) are: u=1, 
v=2, x=0, y=1, and z=2. Let us take v as the target 
document for the ranking, and suppose that a given 
ranker, upon examining the text of the documents, 
returned them in the following order (from most related 
to v to least related):  

(x, v, u, z, y)  

We now consider the list of query-relevance scores, 
R, that correspond to this ordering of the documents.  
This would be: 

R = (0, 2, 1, 2, 1) 

The ideal ordering,,I, would be : 

I = (2, 2, 1, 1, 0)  

And the worst-case ordering, W, would be: 

W = (0, 1, 1, 2, 2) 

R is then regarded as having been created by shifting 
the 2’s (the definitely relevant documents) away from 
the W positions and toward the I positions, and the 
ordering in R is given a number of points equal to the 
number of places the 2’s have shifted.  (For this 
evaluation strategy, we don't consider the other 
numbers.) Depending on how you map the 2's to each 
other, the number of points each 2 gets varies, but the 
total is the same. Picking one of the options, let’s say 
that the first two is one position off, and the second 2 is 
two positions off. This gives R a total of three (1+2) 
points. 

So that we can have a score whose size is 
independent of the number of documents in a particular 
query's result set, we normalize the number of points by 
dividing by the maximum number of points. The 
maximum number of points occurs when R is in the 
ideal case scenario with all definitely relevant 
documents (2's) being on the far left. We can derive the 
general formula for the maximum points as follows. 
Suppose we have a worst case ordering of n elements 
with d definitely relevant scores at the far right, as 
shown below. 
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In reordering the list to the ideal case, each of the 2's gets shifted to the far left as shown below. 

 

 

Each 2 is shifted by n-d places. Since there are d 2's, 
that gives us a total number of points P of: 

ddnP *)( −=  

In our example, we have n=5 and d=2, so P=6. This 
would mean that the ranking R gets a score of 3/6 = 0.5.
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